康成生物LOGO   登录 | 注册 | English
 
 
 
 
站内搜索
 
 
  测序服务
 
  芯片服务
 
     
当前位置: 首页 > 产品 > 内容  
 nrStar™ Human tRNA Repertoire PCR Array

    转运RNA(Transfer Ribonucleic Acid,tRNA)是生物体内含量最为丰富的短链非编码RNA分子。它携带并转运氨基酸,参与蛋白翻译,是连接mRNA与蛋白质的重要桥梁。尽管tRNA广泛存在于生物体内,但不同机体基因组对于特定密码子的偏好性不同,从而导致tRNA表达谱的差异。密码子偏好性影响翻译效率和精确性[1-3]。因此,tRNA表达谱的改变对多种细胞生理过程有着显著影响。细胞增殖[4]、分化[4, 5]和凋亡[6]等一系列生命活动都伴随着tRNA水平的变化。另外,许多疾病也显示出tRNA水平和分布的紊乱。系列研究表明,tRNA谱的紊乱和肿瘤[5, 7-14]、Ⅱ型糖尿病[15]、亨廷顿舞蹈症[16]、甲型H1N1流感[17]、天花[17]以及HIV感染[18]等疾病病理活动密切相关。因此, tRNA谱的研究对于深入了解人体生理及病理过程十分关键。
    PCR芯片是研究特定类群基因最为可靠的手段。Arraystar nrStar™ Human tRNA Repertoire PCR Array包含66对细胞核tRNA引物和22对线粒体tRNA引物,覆盖了GtRNAdb和tRNAdb两个数据库的所有反密码子信息。此芯片是研究人类tRNA谱方便有效的工具。
    为了保证数据的可信度,PCR芯片采用3个短链非编码RNA作为内参对照,使用RNA Spike-in对cDNA合成和PCR效率进行评估。同时,芯片包含的基因组DNA对照(genomic DNA control,GDC)可以监控实验过程中基因组DNA污染。另外,PCR阳性对照(positive PCR control, PPC)能够有效的评估PCR效率,并进行板间校正,消除不同批次芯片板之间的实验误差。
    众所周知,tRNA具有大量种类繁多的转录后修饰,这些修饰对tRNA发挥功能起着关键作用。然而,这些修饰会严重影响tRNA cDNA的合成质量。Arraystar公司专门开发的tRNA反转录试剂盒(rtStar™ tRNA-optimized First-Strand Synthesis Kit),能够有效消除这些修饰对cDNA合成的影响,极大提高tRNA cDNA质量。与该试剂盒组合使用,研究人员能够获得更为真实的tRNA谱的变化状况,为研究蛋白质组或tRNA来源片段(tRFs)提供重要信息。在后续研究中,敲低tRNA[19]或过表达tRNA [5, 20, 21]可以进一步揭示tRNA谱在细胞生命活动中的作用。其他用于研究非编码RNA的相关技术也适用于tRNA的后续研究。

产品列表
 
产品名称
规格
描述
 nrStar™ Human tRNA Repertoire PCR Array
 4x96/plate
含66对细胞核tRNA引物和22对线粒体tRNA引物
 
 
芯片特点
囊括了GtRNAdb和tRNAdb两数据库中的所有细胞核和线粒体反密码子信息
涵盖了实时荧光定量PCR所能够区分的所有tRNA信息
利用AlkB酶处理来降低tRNA修饰对于cDNA合成的影响

在大量组织与细胞中验证有效的引物

工作流程
 

适用实时定量荧光PCR仪:
ABI ViiA™ 7, ABI 7500 & ABI 7500 FAST, ABI 7900HT, ABI QuantStudio™ 6 Flex Real-Time PCR system, ABI QuantStudio™ 7 Flex Real-Time PCR system, ABI QuantStudio™ 12K Flex Real-Time PCR System, Bio-Rad CFX384, Bio-Rad iCycler & iQ Real-Time PCR Systems, Eppendorf Realplex, QIAGEN Rotor Gene Q 100, Roche LightCycler 480, Stratagene Mx3000, Roche LightCycler 480

数据库
tRNA反密码子信息(GtRNAdbtRNAdb数据库):
细胞核tRNAs (66):
Ala-AGC,Ala-CGC,Ala-GGC,Ala-TGC,Arg-ACG,Arg-CCG,Arg-CCT, Arg-TCG,Arg-TCT,Asn-ATT,Asn-GTT,Asp-ATC,Asp-GTC,Cys-GCA,Gln-CTG-1,Gln-CTG-2,Gln-TTG-1,Gln-TTG-2,Glu-CTC,Glu-TTC,Gly-CCC,Gly-CCC-1,Gly-GCC,Gly-TCC,His-GTG,Ile-AAT,Ile-TAT,Ini-CAT,Leu-AAG,Leu-CAA,Leu-CAG,Leu-TAA,Leu-TAG,Lys-CTT-1,Lys-CTT-2,Lys-TTT,Met-CAT,Phe-GAA,Pro-AGG,Pro-CGG,Pro-GGG,Pro-TGG,Sec-TCA,Ser-ACT,Ser-AGA,Ser-CGA,Ser-GCT,Ser-GGA,Ser-TGA,Sup-CTA,Sup-TTA,Thr-AGT-1,Thr-AGT-2,Thr-CGT,Thr-TGT-1,Thr-TGT-2,Trp-CCA,Tyr-ATA,tyr-GAT,Tyr-GTA,Val-AAC,Val-CAC-1,Val-CAC-2,Val-CAC-3,Val-TAC-1,Val-TAC-2,
线粒体tRNAs (22):
mt-Ala-TGC,mt-Arg-TCG,mt-Asn-GTT,mt-Asp-GTC, mt-Cys-GCA, mt-Gln-TTG,mt-Glu-TTC,mt-Gly-TCC,mt-His-GTG,mt-Ile-GAT,mt-Leu-TAA,mt-Leu-TAG,mt-Lys-TTT,mt-Met-CAT,mt-Phe-GAA,mt-Pro-TGG,mt-Ser-GCT,mt-Ser-TGA,mt-Thr-TGT,mt-Trp-TCA,mt-Tyr-GTA,mt-Val-TAC,

参考文献
[1] Drummond DA, Wilke CO. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 2008;134:341-52.
[2] Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nature reviews Genetics 2011;12:32-42.
[3] Shah P, Gilchrist MA. Explaining complex codon usage patterns with selection for translational efficiency, mutation bias, and genetic drift. Proceedings of the National Academy of Sciences of the United States of America 2011;108:10231-6.
[4] Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F, Kooistra SM, et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell 2014;158:1281-92.
[5] Pavon-Eternod M, Gomes S, Rosner MR, Pan T. Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. Rna 2013;19:461-6.
[6] Mei Y, Stonestrom A, Hou YM, Yang X. Apoptotic regulation and tRNA. Protein & cell 2010;1:795-801.
[7] Berns A. A tRNA with oncogenic capacity. Cell 2008;133:29-30.
[8] Waldman YY, Tuller T, Sharan R, Ruppin E. TP53 cancerous mutations exhibit selection for translation efficiency. Cancer research 2009;69:8807-13.
[9] Kushner JP, Boll D, Quagliana J, Dickman S. Elevated methionine-tRNA synthetase activity in human colon cancer. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine 1976;153:273-6.
[10] Marshall L, Kenneth NS, White RJ. Elevated tRNA(iMet) synthesis can drive cell proliferation and oncogenic transformation. Cell 2008;133:78-89.
[11] Pavon-Eternod M, Gomes S, Geslain R, Dai Q, Rosner MR, Pan T. tRNA over-expression in breast cancer and functional consequences. Nucleic acids research 2009;37:7268-80.
[12] Zhou Y, Goodenbour JM, Godley LA, Wickrema A, Pan T. High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma. Biochemical and biophysical research communications 2009;385:160-4.
[13] Begley U, Sosa MS, Avivar-Valderas A, Patil A, Endres L, Estrada Y, et al. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-alpha. EMBO molecular medicine 2013;5:366-83.
[14] Goodarzi H, Nguyen HC, Zhang S, Dill BD, Molina H, Tavazoie SF. Modulated Expression of Specific tRNAs Drives Gene Expression and Cancer Progression. Cell 2016;165:1416-27.
[15] Krokowski D, Han J, Saikia M, Majumder M, Yuan CL, Guan BJ, et al. A self-defeating anabolic program leads to beta-cell apoptosis in endoplasmic reticulum stress-induced diabetes via regulation of amino acid flux. The Journal of biological chemistry 2013;288:17202-13.
[16] Girstmair H, Saffert P, Rode S, Czech A, Holland G, Bannert N, et al. Depletion of cognate charged transfer RNA causes translational frameshifting within the expanded CAG stretch in huntingtin. Cell reports 2013;3:148-59.
[17] Pavon-Eternod M, David A, Dittmar K, Berglund P, Pan T, Bennink JR, et al. Vaccinia and influenza A viruses select rather than adjust tRNAs to optimize translation. Nucleic acids research 2013;41:1914-21.
[18] van Weringh A, Ragonnet-Cronin M, Pranckeviciene E, Pavon-Eternod M, Kleiman L, Xia X. HIV-1 modulates the tRNA pool to improve translation efficiency. Molecular biology and evolution 2011;28:1827-34.
[19] Fu G, Xu T, Shi Y, Wei N, Yang XL. tRNA-controlled nuclear import of a human tRNA synthetase. The Journal of biological chemistry 2012;287:9330-4.
[20] Gong M, Gong F, Yanofsky C. Overexpression of tnaC of Escherichia coli inhibits growth by depleting tRNA2Pro availability. Journal of bacteriology 2006;188:1892-8.
[21] Yona AH, Bloom-Ackermann Z, Frumkin I, Hanson-Smith V, Charpak-Amikam Y, Feng Q, et al. tRNA genes rapidly change in evolution to meet novel translational demands. eLife 2013;2:e01339.

tRF/tiRNA/tRNA
产品信息
nrStar™ Human tRNA Repertoire PCR Array
nrStar™ Human tRF&tiRNA PCR Array
技术服务
tRF&tiRNA测序服务
nrStar™ tRF&tiRNA PCR芯片技术服务
nrStar™ Human tRNA Repertoire PCR Array
tRNA测序服务
tRF & tiRNA实时定量PCR技术服务
相关文献
tRF&tiRNA:为什么以及如何研究它们?
tRNA相关研究背景介绍
回到页首
 
  沪ICP备16042410号 ©Copyright 2007 KangChen Bio-tech Inc. All rights reserved.
版权声明  |  关于康成  |  联系我们